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Abstract. The atomic size conditions for stabilising the ZD Penrose pattern were studied. The 
?D Penrose patterns decorated by two kinds of Lennard-Jones particles according to Socolar 
and Steinhardt were relaxed by molecular dynamics. From structural analysis by Voronoi 
polygons and calculations of kinematical diffraction patterns. i t  was found that the atomic 
radius ratio ( r , , )  had to be in the range 0.5177-0.7900 to keep the ?D Penrose pattern 
topologically stable. Interstitial and substitutional FCC( 111) solid solutions were obtained as 
the stable atomic arrangements of the systems with rr = 0.2071 and 1.000, respectively. The 
other systems with r, = 0.3107-0.4660 and 0.800@0.9000 showed the twelve-fold and ten- 
fold symmetry in the diffraction patterns, respectively, indicating the existence of the other 
kind of aperiodic structure and the multiply twinned structure, respectively. 

1. Introduction 

The quasicrystal which was found by Shechtman et a1 (1984) has been recognised as a 
new phase. However, its mechanical and thermal stability is not clear yet. The Al-X 
(where X is a transition metal) quasicrystalline phases were produced by the melt 
spinning method similar to that used in producing amorphous materials and their stability 
was investigated experimentally by DSC measurements (Kimura et a1 1985, 1986), DTA 
measurements (Dunlap and Dini 1986), in situ x-ray diffraction (Wang et a1 1986) and 
in situ TEM observations (Follstaedt and Knapp 1986a, b). From these experiments, it 
has been concluded that the quasicrystal is a metastable phase with a free energy 
intermediate between those of crystal and amorphous phases. Recently, however, the 
millimeter size grain of the single icosahedral phase was found to be produced by 
the conventional casting method (Dubost et a1 1986, Gayle 1987), which suggests the 
existence of an intrinsically stable quasicrystalline phase. X-ray diffraction (Kortan et a1 
1987), EXAFS (Ma et a1 1987) and superconductivity (Jim et a1 1987) of these samples 
were also studied. Therefore it is of great interest to clarify the conditions under which 
the Penrose pattern composed of different kinds of atoms could be stable. In this paper, 
the Penrose tiling is considered as a model of the quasicrystal structure (Ogawa 1985). 
The mechanical stability of quasicrystal structures has not been investigated very much 
so far; the phenomenological consideration of Landau free energy (Alexander and 

0953-8984/89/458759 + 12 $02.50 @ 1989 IOP Publishing Ltd 8759 



8760 Y Sasajinza et a1 

McTague 1978, Bak 1985, Mermin and Troian 1985, Jaric 1985, Nelson and Sachdev 
1985, Hornreich and Shtrikman 1986, Rokhsar and Sethna 1986), the structural relax- 
ation by the conjugate gradient method (Levine and Steinhardt 1986) or the Monte 
Carlo method (Widom et a1 1987), the electronic band theory (Voisin and Pasture1 1987) 
and quasicrystal growth simulations (Minchau et a1 1987). These works suggest the 
possibility of the existence of stable quasicrystals but the conditions for their stability 
are not yet evident. In the present study, the stability of the Penrose patterns decorated 
with two kinds of atoms was investigated by molecular dynamics. Since the atomic size 
factor is considered to be an essential factor in the stability of quasicrystal structures. 
the atomic radius ratio of small to large particles was the only variable parameter taken 
into account in the present simulations. 

Contrary to our assumption, there is another possibility; that the anisotropic poten- 
tial, which can be derived from the electronic states in the material, plays an essential 
role in forming the quasicrystal structure. The anisotropic effect of the interacting 
potential may be important in the aggregation of nucleated icosahedral clusters in 
forming the ordered structure with quasiperiodicity. We did not study the role of 
the anistropy of the atomic interaction nor the aggregation process of icosahedral 
(pentagonal in the 2~ case) clusters. Simulation of nucleation and aggregation of clusters 
in quasicrystal formation is the subsequent problem. 

For simplicity of the structural analysis, the simulation was performed for 213 systems. 
Therefore it is not completely clear what the relationship between our results and the 
actual 30 quasicrystal structure is. At this stage, we should be content to infer the 
situation in the 3~ case according to the following assumption: the 2~ quasicrystal 
structure can be understood as the assembly of the pentagon clusters and the icosahedral 
clusters in the 3D quasicrystal play the same role as the pentagon clusters in the 2~ 
quasicrystal. However, the small monatomic clusters prefer to form icosahedral clusters 
in the 3~ space than in the 2~ space, so the details of the quasicrystal formation process 
cannot be known until more realistic 3D models are studied. Our simulation method, 
presented here, can be applied to such more complicated systems. 

2. Methods of calculation 

The first problem is how to decorate the 2D Penrose pattern with the two kinds of atoms. 
Of the many ways of decoration proposed so far, the Socolar-Steinhardt type (Socolar 
and Steinhardt 1986) shown in figure 1 was chosen. In this atomic arrangement, smaller 
atoms (A) are always surrounded by larger atoms (B) so as to make its coordination 
number 5 .  The interaction potentials were assumed to be of the Lennard-Jones type, 

q ( r )  = 4&((a/r)'* - (0,'~)~). (1) 

Three kindsof interaction, A-A, B-B and A-B should be considered for two-component 
systems. Here we focus upon the parameter a which dominates the atomic radius and 
fixed the other parameter E through the three types of interaction. Taking into account 
the interactions up to the fifth neighbour, aAA and oBB were determined, in order to 
reproduce the lattice constants of pure systems of A and B in the Fcc(ll1) structures, 
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Figure 1. ( a )  Socolar-Steinhardt type decoration of the ?D Penrose pattern and ( b )  its 
diffraction pattern. 

respectively. In this paper, we have taken the unit of distance as the lattice constant of 
B. Then uBB was determined as 

OB* = 0.89933 ( 2 )  

and is fixed throughout the present simulations. The only variable parameter oAA is 
expressed by the atomic radius ratio ( r , ) ,  

U A A  = Y, . U B B .  (3) 

(4) 

uAB was set simply by the following equation. 

0 A B  = (oAA + u B B > / 2 .  

We determined the last parameter E of the pure system B to reproduce the cohesive 
energy of aluminium, 3.39 (eV/atom), 

E = 1.0076 ( ev ) .  ( 5 )  

We have also performed the whole simulation using several different values of E and 
found that the simulated results such as stability conditions hardly depended on the 
parameter E at all. If the locally densely packed structures are considered, the atomic 
radius ratio 

r,5 = l/sin(n/5) - 1 = 0.7013 (6) 
gives the coordination number 5 and 

r,4 = ~ - 1 = 0.4142 (7) 
gives the coordination number 4. The ZD quasicrystal structure by Socolar-Steinhardt 
could be stable in the vicinity of r,5 in atomic radius ratio but eleswhere it would change 
into other stable phases such as crystal structures. 

The 2D Penrose patterns composed of two kinds of atom with a variety of atomic 
ratios (ra = 0.2071-1 .000), were constructed and energetically relaxed by molecular 
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Table 1. The atomic radius ratios and the potential parameters for the simulated systems. 
ra = 0.4142, 0.7013 and 1.000 are the appropriate values for sphere packings with coor- 
dination numbers 4,5 and 6, respectively. The potential parameters for the B-B interaction, 
uBB and E ,  were fixed as 0.89933 and 1.0076 eV, respectively. 

r ,  &AA r, &AA 

0.2071 0.4175 X 0.7013 0.6294 x 10-1 
0.3107 0.4756 X 0.7900 0.1286 
0.4142 0.2672 X 0.8000 0.1387 
0.4660 0.5417 X lo-* 0.9000 0.2812 
0.5177 0.1019 x lo-’ 1.0000 0.5291 
0.5610 0.1650 X lo-’ 

dynamics. The relaxation time step was of the order of s and the total potential 
and kinetic energies were monitored during the relaxations. We have studied the final 
atomistic structures by Voronoi polygon analysis and simulated their diffraction patterns 
by the kinematical theory, 

I ( q )  = ~ 2 f, exp(iq - r, 1 1 (8) 
I 

where q, r, andf, are the wavenumber vector, the position and the atomic form factor of 
thejth atom, respectively. Heref, has two kinds of values,f, andfb for atom A and atom 
B, respectively, and their ratio was assumed to be 

f a  : f h  = 25: 13 (9) 
which is the ratio of atomic numbers of manganese to aluminium. The system containing 
76 atoms was mainly studied but in some cases a larger system with 476 atoms was also 
relaxed to check the effects of the boundary atoms on the simulated results. 

3. Results and discussion 

The atomic radius ratios and the potential parameters of the simulated systems are 
shown in table 1. Figure 2 shows the changes of atomic configurations and diffraction 
patterns for the systems with ra = 0.5610. The system with rd = 0.5610 was able to keep 
the structure with five-fold symmetry stable, although the tiles of the 2~ Penrose pattern 
were fairly distorted. The diffraction patterns shown in figure 2(b) reflect this fact. Figure 
3 shows the stable atomic configurations and their diffraction patterns for the systems 
with various atomic radius ratios; rd = 0.2071, 0.4142, 0.5177, 0.7013, 0,8000, 0.9000 
and 1.000. The types of relaxed structure and the symmetry of their diffraction patterns 
are summarised in table 2. The system with rd = 0.2071 corresponds to the interstitial 
solid solution of the Fcc(ll1) structure and those with ra = 0.5177-0.7900 the aperiodic 
structures with five-fold symmetry. The systems of rd = 0.8000-0.9000 also gave the 
diffraction patterns with five-fold symmetry but the structures can be recognised as the 
multiply-twinned crystals from the atomic arrangements. The systems of r ,  = 0.3107- 
0.4660 showed the twelve-fold symmetry in the diffraction patterns which can be related 
to the 2D quasilattice with both twelve-fold symmetry and self-similarity. This phase was 
found experimentally in the nickel-chromium fine particles (Ishimasa et a1 1985). It 
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Table 2. The diagram of the relaxed structures with various atomic radius ratios. 
~~ ~~~ ~ 

r* Structure Symmetry in the D P t  

0 2071 FCC( 11 I ) ,  Six-fold symmetry 
interstitial solid 
solution 

0 3107 Quasilattice with Twelve-fold symmetry 
0 4142 twelve-fold 
0 4660 symmetry 
0 5177 The 2~ Penrose Ten-fold symmetry 
0 5610 pattern 
0 7013 
0 7900 
0 8000 Multiply twinned Ten-fold symmetry!: 

0 9000 
1 000 FCC( I l l ) ,  Six-fold symmetry 

crystal 

substitutional 
solid solution 

’i DP: diffraction pattern. 
$ Hardly noticeable. 

should also be emphasised that the ternary fine particles of nickel-chromium-silicon 
show the eight-fold symmetry in the diffraction pattern (Wang et a1 1987). 

In the system of r,  = 1 .OOO, i.e the single particle system, the embryos of the ~ c c (  111) 
crystal appeared immediately after relaxation and finally changed into a single crystal 
of Fcc(111) structure. The detailed relaxation processes of this system, the structures 
and the phonon and electronic spectra have been reported in previous papers (Sasajima 
eta1 1987, 1989). 

The most favourable condition of atomic radius ratio for the stability of the 2~ 
Penrose pattern was ra = 0.5610 and that of the quasilattice with twelve-fold symmetry 
was r, = 0.4142. These results suggest the existence of stable quasilattice structures with 
five-fold and twelve-fold symmetry when the two kinds of constituent atoms have the 
appropriate atomic radius ratio, ra = 0.5177-0.7900 and 0.3107-0.4660, respectively. 
The Voronoi polygons were calculated for each system. The examples of the Voronoi 
polygon partitions are shown in figure 4 and the fundamental properties are listed in 
table 3. It was confirmed that the 2~ Penrose pattern did not show the structural change 
topologically if ra = 0.5177-0.7013. In the systems with r, = 0.7500-0.7900, the number 
of hexagons is much greater than in the Penrose pattern. Since the hexagons are almost 
pentagon shaped and the diffraction patterns showed ten-fold symmetry, these systems 
could be classified as an aperiodic structure with five-fold symmetry. Nevertheless it is 
open to question whether these structures were really ‘quasicrystals’ because they have 
neither the sharp peaks nor the self-similarity in the diffraction pattern. Although those 
structures were assumed to be assemblies of micro grains of quasicrystal phases, the 
irrational number ratio in the distances of the diffraction rings could not be found. This 
was probably due to the small system size or inappropriate ways of atomic decoration 
of the Penrose pattern. To check the effects of the system size, the Penrose pattern 
containing 476 atoms with ra = 0.5610 was simulated. The atomic arrangement and its 
diffraction pattern are shown in figure 5. Compared to the 76 atom case, it was confirmed 
that the system size hardly changed the results. This is supported by the fact that the 
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Figure 2. The changes of ( a )  the atomic configurations and ( b )  the diffraction patterns for 
the system of rd = 0.5610. The inserted numbers represent the relaxation time steps. 
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Figure 3. The relaxed atomic configurations and corresponding diffraction patterns for the 
systemsofr, = (a)0.2071; (b)0.4142;(~)0.5177; (d)0.7013;(e)0.8000;(f)0.9000;(g) 1.000; 
for relaxation time step of 800. 
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Figure 4. The Voronoi polygons of (a )  the Penrose pattern and ( b )  the related structure of 
the system of ra = 0.5610. 

same structure in any region of the Penrose pattern can be found in the vicinity of 
that region. Contrary to the Penrose tiling model, the quasicrystal structure can be 
interpreted as the periodic structure with a large unit cell. Actually, the Penrose pattern 
is changed into the periodic pattern if its tiling is slightly changed. It is worth mentioning 
that the calculated Fourier transforms of these quasiperiodic and periodic patterns show 
almost the same results. The periodic structural model is not studied in our simulation. 
The calculated system with 76 atoms can be interpreted as the small nucleus formed in 
the melt at initial stage of quasicrystal formation. Thus its stability is at least a necessary 
condition to guarantee the stability of the 2~ quasicrystal structure with the Socolar- 
Steinhardt type of decoration. 

Table 3. The distribution of the Voronoi polygons for the relaxed structures. 

Step (3)  (4) ( 5 )  (6) (7) (8) 

0 
1.000 
0.9000 
0.8000 
0.7900 
0.7800 
0.7700 
0.7500 
0.7013 
0.5610 
0.5177 
0.4660 
0.4142 
0.3107 
0.2071 
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Figure 5.  The atomic structures of the system of I ,  = 0.5610 containing 476 atoms at (a )  0 
step and ( b )  800 step. Their diffraction patterns are shown below the structures. 

To find the more stable quasicrystal structure, the other types of decoration of the 
Penrose pattern must be studied. From the viewpoint of the hard disc packings, the 
Henley type decoration (Henley 1986) is considered to be a good model for the stable 
quasicrystal. The results will be reported in a subsequent paper. 

4. Conclusion 

The stability of the 2~ Penrose pattern in which the smaller atoms are always surrounded 
by the larger atoms with coordination number 5 ,  i.e. the Steinhardt and Socolar model, 
were studied by molecular dynamics. The relaxed structures were analysed by Voronoi 
polygon partitions and using diffraction patterns. The range of values the atomic radius 
ratio needed to keep the quasilattice stable was revealed. The stable quasiperiodic 
structures with five-fold and twelve-fold symmetry could be realized if ra = 0.5177- 
0.7900 and 0.3107-0.4660, respectively. The final structures of the systems with r, = 
0.2071 and 1.000 were the interstitial and substitutional solid solutions of Fcc( l l l ) ,  
respectively. The systems with r, = 0.80004.9000 were changed into the multiply twin- 
ned crystals such that they showed ten-fold symmetry in the diffraction patterns. The 
Penrose tiles of the system with r, = 0.5610 was distorted least among the simulated 
systems. 
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